Glial cell line-derived neurotrophic factor gene delivery via a polyethylene imine grafted chitosan carrier
نویسندگان
چکیده
Parkinson's disease is known to result from the loss of dopaminergic neurons. Direct intracerebral injections of high doses of recombinant glial cell line-derived neurotrophic factor (GDNF) have been shown to protect adult nigral dopaminergic neurons. Because GDNF does not cross the blood-brain barrier, intracerebral gene transfer is an ideal option. Chitosan (CHI) is a naturally derived material that has been used for gene transfer. However, the low water solubility often leads to decreased transfection efficiency. Grafting of highly water-soluble polyethylene imines (PEI) and polyethylene glycol onto polymers can increase their solubility. The purpose of this study was to design a non-viral gene carrier with improved water solubility as well as enhanced transfection efficiency for treating Parkinsonism. Two molecular weights (Mw =600 and 1,800 g/mol) of PEI were grafted onto CHI (PEI600-g-CHI and PEI1800-g-CHI, respectively) by opening the epoxide ring of ethylene glycol diglycidyl ether (EX-810). This modification resulted in a non-viral gene carrier with less cytotoxicity. The transfection efficiency of PEI600-g-CHI/deoxyribonucleic acid (DNA) polyplexes was significantly higher than either PEI1800-g-CHI/DNA or CHI/DNA polyplexes. The maximal GDNF expression of PEI600-g-CHI/DNA was at the polymer:DNA weight ratio of 10:1, which was 1.7-fold higher than the maximal GDNF expression of PEI1800-g-CHI/DNA. The low toxicity and high transfection efficiency of PEI600-g-CHI make it ideal for application to GDNF gene therapy, which has potential for the treatment of Parkinson's disease.
منابع مشابه
The Effects of Progesterone on Glial Cell Line-derived Neurotrophic Factor Secretion from C6 Glioma Cells
Objective(s)Progesterone is a steroid hormone whose biology has been greatly studied within the confines of reproductive function. In recent years, the neuroprotective effects of progesterone have attracted growing interest. Glial cell line-derived neurotrophic factor (GDNF), is a neurotrophic factor which plays a crucial role in the development and maintenance of distinct sets of central and p...
متن کاملIntraspinal transplantation of motoneuron-like cell combined with delivery of polymer-based glial cell line-derived neurotrophic factor for repair of spinal cord contusion injury
To evaluate the effects of glial cell line-derived neurotrophic factor transplantation combined with adipose-derived stem cells-transdifferentiated motoneuron delivery on spinal cord contusion injury, we developed rat models of spinal cord contusion injury, 7 days later, injected adipose-derived stem cells-transdifferentiated motoneurons into the epicenter, rostral and caudal regions of the imp...
متن کاملGDNF fails to exert neuroprotection in a rat α-synuclein model of Parkinson's disease.
The neuroprotective effect of the glial cell line-derived neurotrophic factor has been extensively studied in various toxic models of Parkinson's disease. However, it remains unclear whether this neurotrophic factor can protect against the toxicity induced by the aggregation-prone protein α-synuclein. Targeted overexpression of human wild-type α-synuclein in the nigrostriatal system, using aden...
متن کاملTransfection of the glial cell line-derived neurotrophic factor gene promotes neuronal differentiation
Glial cell line-derived neurotrophic factor recombinant adenovirus vector-transfected bone marrow mesenchymal stem cells were induced to differentiate into neuron-like cells using inductive medium containing retinoic acid and epidermal growth factor. Cell viability, microtubule-associated protein 2-positive cell ratio, and the expression levels of glial cell line-derived neurotrophic factor, ne...
متن کاملPii: S0306-4522(00)00079-8
Glial cell line-derived neurotrophic factor is one of the most potent motoneuron survival factors yet identified. Although retrograde transport of trophic factors to the cell body is thought to be an important process in motoneuron survival, the transport pathways that lead to interaction of glial cell line-derived neurotrophic factor with its receptors is not known. We have used a double ligat...
متن کامل